Efficient Energy Use

Efficient energy use, sometimes simply called energy efficiency, is the goal of efforts to reduce the amount of energy required to provide products and services. For example, insulating a home allows a building to use less heating and cooling energy to achieve and maintain a comfortable temperature. Installing fluorescent lights or natural skylights reduces the amount of energy required to attain the same level of illumination compared with using traditional incandescent light bulbs. Compact fluorescent lights use one-third the energy of incandescent lights and may last 6 to 10 times longer. Improvements in energy efficiency are most often achieved by adopting a more efficient technology or production process.[2]

There are various motivations to improve energy efficiency. Reducing energy use reduces energy costs and may result in a financial cost saving to consumers if the energy savings offset any additional costs of implementing an energy efficient technology. Reducing energy use is also seen as a solution to the problem of reducing emissions. According to the International Energy Agency, improved energy efficiency in buildings, industrial processes and transportation could reduce the world’s energy needs in 2050 by one third, and help control global emissions of greenhouse gases.[3]

Energy efficiency and renewable energy are said to be the twin pillars of sustainable energy policy.[4] In many countries energy efficiency is also seen to have a national security benefit because it can be used to reduce the level of energy imports from foreign countries and may slow down the rate at which domestic energy resources are depleted.


Energy efficiency has proved to be a cost-effective strategy for building economies without necessarily increasing energy consumption. For example, the state of California began implementing energy-efficiency measures in the mid-1970s, including building code and appliance standards with strict efficiency requirements. During the following years, California’s energy consumption has remained approximately flat on a per capita basis while national U.S. consumption doubled. As part of its strategy, California implemented a “loading order” for new energy resources that puts energy efficiency first, renewable electricity supplies second, and new fossil-fired power plants last.[5]

Lovins’ Rocky Mountain Institute points out that in industrial settings, “there are abundant opportunities to save 70% to 90% of the energy and cost for lighting, fan, and pump systems; 50% for electric motors; and 60% in areas such as heating, cooling, office equipment, and appliances.” In general, up to 75% of the electricity used in the U.S. today could be saved with efficiency measures that cost less than the electricity itself. The same holds true for home-owners, leaky ducts have remained an invisible energy culprit for years. In fact, researchers at the US Department of Energy and their consortium, Residential Energy Efficient Distribution Systems (REEDS) have found that duct efficiency may be as low as 50-70%. The US Department of Energy has stated that there is potential for energy saving in the magnitude of 90 Billion kWh by increasing home energy efficiency.[6]

Other studies have emphasized this. A report published in 2006 by the McKinsey Global Institute, asserted that “there are sufficient economically viable opportunities for energy-productivity improvements that could keep global energy-demand growth at less than 1 percent per annum”—less than half of the 2.2 percent average growth anticipated through 2020 in a business-as-usual scenario. Energy productivity, which measures the output and quality of goods and services per unit of energy input, can come from either reducing the amount of energy required to produce something, or from increasing the quantity or quality of goods and services from the same amount of energy.

The Vienna Climate Change Talks 2007 Report, under the auspices of the United Nations Framework Convention on Climate Change (UNFCCC), clearly shows “that energy efficiency can achieve real emission reductions at low cost.”[7]


The impact of energy efficiency on peak demand depends on when the appliance is used.[12] For example, an air conditioner uses more energy during the afternoon when it is hot. Therefore, an energy efficient air conditioner will have a larger impact on peak demand than off-peak demand. An energy efficient dishwasher, on the other hand, uses more energy during the late evening when people do their dishes. This appliance may have little to no impact on peak demand.

Building design

A building’s location and surroundings play a key role in regulating its temperature and illumination. For example, trees, landscaping, and hills can provide shade and block wind. In cooler climates, designing buildings with south-facing windows increases the amount of sun (ultimately heat energy) entering the building, minimizing energy use, by maximizing passive solar heating. Tight building design, including energy-efficient windows, well-sealed doors, and additional thermal insulation of walls, basement slabs, and foundations can reduce heat loss by 25 to 50 percent.[11]

Dark roofs may become up to 39 C° (70 F°) hotter than the most reflective white surfaces, and they transmit some of this additional heat inside the building. US Studies have shown that lightly colored roofs use 40 percent less energy for cooling than buildings with darker roofs. White roof systems save more energy in sunnier climates. Advanced electronic heating and cooling systems can moderate energy consumption and improve the comfort of people in the building.[11]

Proper placement of windows and skylights as well as the use of architectural features that reflect light into a building can reduce the need for artificial lighting. Increased use of natural and task lighting has been shown by one study to increase productivity in schools and offices.[13]

Effective energy-efficient building design can include the use of low cost Passive Infra Reds (PIRs) to switch-off lighting when areas are unnoccupied such as toilets, corridors or even office areas out-of-hours. In addition, lux levels can be monitored using daylight sensors linked to the building’s lighting scheme to switch on/off or dim the lighting to pre-defined levels to take into account the natural light and thus reduce consumption. Building Management Systems (BMS) link all of this together in one centralised computer to control the whole building’s lighting and power requirements.[14]

The choice of which space heating or cooling technology to use in buildings can have a significant impact on energy use and efficiency. For example, replacing an older 50% efficient natural gas furnace with a new 95% efficient one will dramatically reduce energy use, carbon emissions, and winter natural gas bills. Ground source heat pumps can be even more energy efficient and cost effective. These systems use pumps and compressors to move refrigerant fluid around a thermodynamic cycle in order to “pump” heat against its natural flow from hot to cold, for the purpose of transferring heat into a building from the large thermal reservoir contained within the nearby ground. The end result is that heat pumps typically use four times less electrical energy to deliver an equivalent amount of heat than a direct electrical heater does. Another advantage of a ground source heat pump is that it can be reversed in summertime and operate to cool the air by transferring heat from the building to the ground. The disadvantage of ground source heat pumps is their high initial capital cost, but this is typically recouped within five to ten years as a result of lower energy use.

Smart meters are slowly being adopted by the commercial sector to highlight to staff and for internal monitoring purposes the building’s energy usage in a dynamic presentable format. The use of Power Quality Analysers can be introduced into an existing building to assess usage, harmonic distortion, peaks, swells and interruptions amongst others to ultimately make the building more energy-efficient. Often such meters communicate by using wireless sensor networks.[15]

A Indianapolis City-County Building recently underwent a deep energy retrofit process, which has achieved an annual energy reduction of 46% and $750,000 annual energy savings.


Industry uses a large amount of energy to power a diverse range of manufacturing and resource extraction processes. Many industrial processes require large amounts of heat and mechanical power, most of which is delivered as electricity. In addition some industries generate fuel from waste products that can be used to provide additional energy.

Because industrial processes are so diverse it is impossible to describe the multitude of possible opportunities for energy efficiency in industry. Many depend on the specific technologies and processes in use at each industrial facility. There are, however, a number of processes and energy services that are widely used in many industries.

Various industries generate steam and electricity for subsequent use within their facilities. When electricity is generated, the heat that is produced as a by-product can be captured and used for process steam, heating or other industrial purposes. Conventional electricity generation is about 30% efficient, whereas combined heat and power (also called co-generation) converts up to 90 percent of the fuel into usable energy.[18]

Advanced boilers and furnaces can operate at higher temperatures while burning less fuel. These technologies are more efficient and produce fewer pollutants.[18]

Over 45 percent of the fuel used by US manufacturers is burnt to make steam. The typical industrial facility can reduce this energy usage 20 percent (according to the US Department of Energy) by insulating steam and condensate return lines, stopping steam leakage, and maintaining steam traps.[18]

Electric motors usually run at a constant speed, but a variable speed drive allows the motor’s energy output to match the required load. This achieves energy savings ranging from 3 to 60 percent, depending on how the motor is used. Motor coils made of superconducting materials can also reduce energy losses.[18] Motors may also benefit from voltage optimisation.

Industry uses a large number of pumps and compressors of all shapes and sizes and in a wide variety of applications. The efficiency of pumps and compressors depends on many factors but often improvements can be made by implementing better process control and better maintenance practices. Compressors are commonly used to provide compressed air which is used for sand blasting, painting, and other power tools. According to the US Department of Energy, optimizing compressed air systems by installing variable speed drives, along with preventive maintenance to detect and fix air leaks, can improve energy efficiency 20 to 50 percent.[18]

Alternative fuels

Alternative fuels, known as non-conventional or advanced biomass sources.

 Energy conservation

Energy conservation is broader than energy efficiency in including active efforts to decrease energy consumption, for example through behavioural change, in addition to using energy more efficiently. Examples of conservation without efficiency improvements are heating a room less in winter, using the car less, or enabling energy saving modes on a computer. As with other definitions, the boundary between efficient energy use and energy conservation can be fuzzy, but both are important in environmental and economic terms.[24] This is especially the case when actions are directed at the saving of fossil fuels.[25] Energy conservation is a challenge requiring policy programmes, technological development and behavioral change to go hand in hand. Many energy intermediary organisations, for example governmental or non-governmental organisations on local, regional, or national level, are working on often publicly funded programmes or projects to meet this challenge.[26]

Sustainable energy

Energy efficiency and renewable energy are said to be the “twin pillars” of a sustainable energy policy. Both strategies must be developed concurrently in order to stabilize and reduce carbon dioxide emissions. Efficient energy use is essential to slowing the energy demand growth so that rising clean energy supplies can make deep cuts in fossil fuel use. If energy use grows too rapidly, renewable energy development will chase a receding target. Likewise, unless clean energy supplies come online rapidly, slowing demand growth will only begin to reduce total carbon emissions; a reduction in the carbon content of energy sources is also needed. A sustainable energy economy thus requires major commitments to both efficiency and renewables.[27]

Rebound effect

If the demand for energy services remains constant, improving energy efficiency will reduce energy consumption and carbon emissions. However, many efficiency improvements do not reduce energy consumption by the amount predicted by simple engineering models. This is because they make energy services cheaper, and so consumption of those services increases. For example, since fuel efficient vehicles make travel cheaper, consumers may choose to drive farther and/or faster, thereby offsetting some of the potential energy savings. This is an example of the direct rebound effect.[28]

Estimates of the size of the rebound effect range from roughly 5% to 40%.[28] A rebound effect of 30% implies that improvements in energy efficiency should achieve 70% of the reduction in energy consumption projected using engineering models.

Since more efficient (and hence cheaper) energy will also lead to faster economic growth, there are suspicions that improvements in energy efficiency may eventually lead to even faster resource use. This was postulated by economists in the 1980s and remains a controversial hypothesis. Ecological economists have suggested that any cost savings from efficiency gains be taxed away by the government in order to avoid this outcome.[32]


  1. ^ “Philips Tornado Asian Compact Fluorescent”. Philips. http://www.lamptech.co.uk/Spec%20Sheets/Philips%20CFL%20Tornado.htm. Retrieved 2007-12-24.
  2. ^ Diesendorf, Mark (2007). Greenhouse Solutions with Sustainable Energy, UNSW Press, p. 86.
  3. ^ Sophie Hebden (2006-06-22). “Invest in clean technology says IEA report”. Scidev.net. http://www.scidev.net/News/index.cfm?fuseaction=readNews&itemid=2929&language=1. Retrieved 2010-07-16.
  4. ^ “The Twin Pillars of Sustainable Energy: Synergies between Energy Efficiency and Renewable Energy Technology and Policy”. Aceee.org. Archived from the original on 2008-05-05. http://web.archive.org/web/20080505041521/http://aceee.org/store/proddetail.cfm?CFID=2957330&CFTOKEN=50269931&ItemID=432&CategoryID=7. Retrieved 2010-07-16.
  5. ^ “Loading Order White Paper” (PDF). http://www.energy.ca.gov/2005publications/CEC-400-2005-043/CEC-400-2005-043.PDF. Retrieved 2010-07-16.
  6. ^ “Weatherization in Austin, Texas”. Green Collar Operations. http://www.greencollaroperations.com/weatherization-austin-tx.html. Retrieved 2010-07-16.
  7. ^ “Microsoft Word – 20070831_vienna_closing_press_release.doc” (PDF). http://unfccc.int/files/press/news_room/press_releases_and_advisories/application/pdf/20070831_vienna_closing_press_release.pdf. Retrieved 2010-07-16.
  8. ^ “Ecosavings”. Electrolux.com. http://www.electrolux.com/ecosavings. Retrieved 2010-07-16.
  9. ^ “Ecosavings (Tm) Calculator”. Electrolux.com. http://www.electrolux.com/ecosavings_us. Retrieved 2010-07-16.
  10. ^ McKinsey & Company (2009). Pathway to a Low-Carbon Economy : Version 3 of the Global Greenhouse Gas Abatement Cost Curve, p. 7.
  11. ^ http://www.eesi.org/buildings_efficiency_0506. Retrieved 2010-07-16.
  12. ^ “The impact of energy efficiency on peak demand”. Energydsm.com. http://www.energydsm.org/energy-efficiency. Retrieved 2010-07-16.
  13. ^ CFL savings calculator, Green Energy Efficient Homes
  14. ^ Creating Energy Efficient Offices – Electrical Contractor Fit-out Article
  15. ^ “Wireless smart meter by ecowizard”. Ecowizard.net. http://www.ecowizard.net/. Retrieved 2010-07-16.
  16. ^ jeancarassus.zumablog.com/images/2128_uploads/Fuerst_New_paper.pdf
  17. ^ http://esbnyc.com/sustainability_energy_efficiency.asp
  18. ^ http://archives.eesi.org/publications/Fact%20Sheets/EC_Fact_Sheets/EE_Industry.pdf. Retrieved 2010-07-16.
  19. ^ Richard C. Dorf, The Energy Factbook, McGraw-Hill, 1981
  20. ^ “Tips to improve your Gas Mileage”. Fueleconomy.gov. http://www.fueleconomy.gov/feg/maintain.shtml. Retrieved 2010-07-16.
  21. ^ dead link]
  22. ^ http://www.fueleconomy.gov/feg/pdfs/Air_Filter_Effects_02_26_2009.pdf
  23. ^ “2008 Tesla Roadster – Car News”. Car and Driver. http://www.caranddriver.com/reviews/hot_lists/car_shopping/green_machines/2008_tesla_roadster_car_news. Retrieved 2010-07-16.
  24. ^ Dietz, T. et al. (2009).Household actions can provide a behavioral wedge to rapidly reduce U.S. carbon emissions. PNAS. 106(44).
  25. ^ Diesendorf, Mark (2007). Greenhouse Solutions with Sustainable Energy, UNSW Press, p. 87.
  26. ^ Breukers, Heiskanen, et al. (2009). Interaction schemes for successful demand-side management. Deliverable 5 of the CHANGING BEHAVIOUR project. Funded by the EC (#213217).
  27. ^ The Twin Pillars of Sustainable Energy: Synergies between Energy Efficiency and Renewable Energy Technology and Policy (American Council for an Energy-Efficient Economy)
  28. ^ The Rebound Effect: an assessment of the evidence for economy-wide energy savings from improved energy efficiency pp. v-vi.
  29. ^ A. Greening, L; David L. Greene, Carmen Difiglio (2000). “Energy efficiency and consumption—the rebound effect—a survey”. Energy Policy 28 (6–7): 389–401. doi:10.1016/S0301-4215(00)00021-5
  30. ^ Kenneth A. Small and Kurt Van Dender (September 21, 2005). “The Effect of Improved Fuel Economy on Vehicle Miles Traveled: Estimating the Rebound Effect Using U.S. State Data, 1966-2001″. University of California Energy Institute: Policy & Economics. http://repositories.cdlib.org/ucei/policy/EPE-014. Retrieved 2007-11-23.
  31. ^ “Energy Efficiency and the Rebound Effect: Does Increasing Efficiency Decrease Demand?”. http://www.policyarchive.org/handle/10207/bitstreams/3492.pdf. Retrieved 2011-10-01.
  32. ^ Wackernagel, Mathis and William Rees, 1997, “Perpetual and structural barriers to investing in natural capital: economics from an ecological footprint perspective.” Ecological Economics, Vol.20 No.3 p3-24.

This article uses material from the Wikipedia article efficient energy use, which is released under the Creative Commons Attribution-Share-Alike License 3.0.

Be Sociable, Share!